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Abstract. The nearest-neighbour-interaction spin-1 Ising spin glass, in the presence of a random
crystal field, is considered on diamond hierarchical lattices of fractal dimensions d = 2, 3 and
4. The coupling constants and crystal fields follow Gaussian probability distributions, which are
taken as independent, at the beginning of the iteration process. By monitoring simultaneously the
evolution of two probability distributions, associated respectively with the renormalized coupling
constants and crystal fields, the phase diagrams of the model are obtained. A spin-glass phase, at
finite temperatures, is found for hierarchical lattices with d = 3 and 4, but not for d = 2. Two
distinct attractors characterized by zero effective coupling constants are detected. Following the
usual procedure, i.e. associating an equilibrium phase with each basin of attraction, one obtains
two phases with absence of magnetic order, namely, a zero-spin phase (where the spins prefer the
0 state) and a ±1-spin phase (where the spins prefer ±1 states at random).

1. Introduction

Spin glasses [1–3] have been, throughout the last decades, among the most fascinating systems
in the physics of disordered magnets. Despite the large effort dedicated to this problem, a
satisfactory theory for the description of short-range spin glasses is still lacking.

Most of the progress has been achieved in the spin- 1
2 Ising case, either at the mean-

field level, through the exact solution of the infinite-range-interaction model (the so-called
Sherrington–Kirkpatrick (SK) [4] model), or through approximation techniques applied to
nearest-neighbour-interaction systems. The mean-field solution presents quite remarkable
properties, such as a phase transition in the presence of an external magnetic field, signalled
by the Almeida–Thouless (AT) [5] line; below the AT line the free-energy landscape becomes
highly nontrivial, characterized by many minima, which are not related by global inversion
symmetries. The validity of the SK model for the description of real systems is a question
which remains under investigation [1]. As concerns short-range-interaction models, different
works [6–12] agree that the lower critical dimension dl lies in the range 2 � dl � 3, in
such a way that there is a finite-temperature phase transition in three dimensions, but not in
two. This conclusion was reached through zero-temperature domain-wall arguments [7, 8],
powerful numerical simulations [9, 10, 12] and extensive high-temperature series expansions
[11]. The result 2 � dl � 3 was first achieved by Southern and Young (SY) [6], almost
a decade before its general acceptance, through a Migdal–Kadanoff renormalization-group
(MKRG) approach, based on diamond-like unit cells. For a diamond cell corresponding to
a fractal dimension d = 3, SY estimated the critical temperatures in the case of symmetric
distributions, as kBTc/J = 1.05±0.02 (±J distribution) and kBTc/J = 0.88±0.02 (Gaussian
distribution of width J ). The most accurate techniques yield, for a cubic lattice, the estimates
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kBTc/J � 1.2 in the former case [9–11], whereas 0.9 < kBTc/J < 1.0 in the latter [10].
For the ±J Ising spin glass, the best estimate available is probably due to recent numerical
simulations (kBTc/J = 1.11 ± 0.04 [12]), which coincides, within the error bars, with the one
of SY. Why, for d = 3, a simple approximation, like the MKRG, provides critical-temperature
estimates in good agreement with the (commonly considered) best techniques is a question not
yet understood. Surprisingly, such a procedure seems to work better for spin glasses than for
simple ferromagnets, at least as concerns critical-temperature estimates. In fact, the MKRG
approach has been extensively used recently in the study of the controversial nature of the
spin-glass phase of the nearest-neighbour-interaction spin- 1

2 Ising spin glass [13].
In order to achieve a better understanding of spin glasses, many other models have been

proposed, such as spin-S (S > 1
2 ) Ising, Potts and vector spin-glass models [2, 3]. Much less

is known about such systems, from which many controversies, concerning different phases,
characterized by new classes of order parameters, have emerged. In particular, the spin-1 Ising
spin glass has been considered, mostly at the mean-field level, through generalizations of the
SK model [14–20]. The phase diagram, for the system in the presence of a crystal field and
a symmetric coupling probability distribution, presents two phases (paramagnetic and spin
glass), separated by a phase boundary composed by a second-order part (high temperatures)
and a first-order one (low temperatures), which meet at a tricritical point. The first-order
critical line has been the object of some controversy: whereas Mottishaw and Sherrington
[16] find a line characterized by a considerable reentrance, da Costa et al [17] find a different
critical frontier, presenting insignificant reentrance effects. However, very little is known about
the nearest-neighbour-interaction spin-1 Ising spin glass. Li et al [21] have considered this
system, for symmetric coupling probability distributions, through zero-temperature domain-
wall techniques, in two dimensions, and for both two- and three-dimensional cases, within a
MKRG approach. The MKRG phase diagram, in the three-dimensional case, for the system
in the presence of a crystal field, yields a critical line with no reentrance, in better agreement
with the mean-field predictions of da Costa et al [17], as compared with those of Mottishaw
and Sherrington [16].

Motivated by the good critical-temperature estimates for the spin- 1
2 case, in the present

work we consider the nearest-neighbour-interaction spin-1 Ising spin-glass model, in the
presence of a random crystal field, defined on diamond hierarchical lattices. The coupling
constants and crystal fields are distributed according to Gaussian probability distributions
with nonzero means. The model is studied through the MKRG approach, which is exact
for pure systems on such lattices [22–24] and expected to yield good approximations for
random systems. The purpose of the present work is to show new results for the spin-1 Ising
spin glass; several phase diagrams, not considered in [21], are presented, for lattices with
fractal dimensions d = 2, 3 and 4. In particular, two phases associated with distinct zero-
effective-coupling-constant attractors are found; to our knowledge, such phases have never
been identified in such a model. In the next section we define the model and the formalism;
in section 3 we exhibit and discuss our phase diagrams; finally, in section 4 we present our
conclusions.

2. The model and formalism

Let us consider the spin-1 Ising spin glass, defined through the Hamiltonian

H = −
∑
〈ij〉

JijSiSj −
∑
i

DiS
2
i (Si = 0,±1) (2.1)
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where the sum
∑

〈ij〉 is restricted to nearest-neighbour pairs of spins on a diamond hierarchical
lattice, generated in such a way that, at each step, a bond is replaced by a diamond-like cell.
Herein, we shall restrict ourselves to unit cells containing L parallel branches, each with two
bonds in series (scaling factor b = 2), whose fractal dimension is given by d = [ln(2L)]/(ln 2).
More specifically, we shall deal with the casesL = 2, 4 and 8, which correspond, respectively,
to d = 2, 3 and 4. These cells are characteristic of the MKRG approach, which is an exact
procedure for pure systems defined on diamond hierarchical lattices [22–24] and is expected
to represent a good approximation for random systems on such lattices.

The coupling constants {Jij } and the crystal fields {Di} are quenched random variables
following Gaussian probability distributions,

P(Jij ) = 1√
2πJ 2

exp[−(Jij − J0)
2/2J 2] (2.2a)

P(Di) = 1√
2πD2

exp[−(Di −D0)
2/2D2]. (2.2b)

The renormalization-group (RG) procedure works inversely to the generation of the lattice,
i.e. it transforms the diamond cells into elementary bonds. It is a well known fact that the model
defined in equation (2.1) is ambiguous under such an RG transformation, in the sense that one
obtains more equations than variables to work with [25]. One possible way to overcome
this difficulty is to introduce new terms in the Hamiltonian, in order to obtain a closed space
of parameters. However, it is important to study the model in its simpler forms, like the
one defined in equation (2.1), or even in the case of no crystal fields, i.e. Di = 0; this is
justifiable, based on the fact that very little is known about the nearest-neighbour-interaction
spin-1 Ising spin glass. Therefore, in order to study the model defined in equation (2.1) through
an RG approach, one should decide on the best choice of RG equations to deal with. In the
appendix we define our RG transformation and discuss the mathematical consistency of the set
of equations; one sees that the equations obtained by fixing the external spins of the diamond
cell to Si = Sj = 0 is only consistent with the remaining equations at the paramagnetic fixed
point. If one is restricted to the equations which may be valid throughout the whole range of
the parameters space, one obtains the recursion relations (see the appendix)

K ′
ij =

L∑
l=1

K ′
l = 1

2

L∑
l=1

ln

{
1 + 2[exp(�l)] cosh(Kil + Klj )

1 + 2[exp(�l)] cosh(Kil −Klj )

}
(2.3)

�′
i = L�i +

L∑
l=1

ln

{
(1 + 2[exp(�l)] cosh(Kil + Klj ))(1 + 2[exp(�l)] cosh(Kil −Klj ))

(1 + 2[exp(�l)] cosh(Klj ))2

}

(2.4a)

�′
j = L�j +

L∑
l=1

ln

{
(1 + 2[exp(�l)] cosh(Kil + Klj ))(1 + 2[exp(�l)] cosh(Kil −Klj ))

(1 + 2[exp(�l)] cosh(Kil))2

}
.

(2.4b)

In the equations above, K ′
ij , Kil and Klj represent, respectively, the renormalized and two

original dimensionless exchange energies ({Kij } ≡ β{Jij }), associated with a given path l

(l = 1, 2, . . . , L) connecting the external sites i and j , whereas�′
i ,�

′
j ,�i ,�j and�l represent

the renormalized and original dimensionless crystal fields ({�i} ≡ β{Di}), associated with
the external and internal sites of a given path l of the diamond cell.

The RG scheme may now be carried out by following numerically the evolution of the
probability distributions associated with the exchange energies and crystal fields. Let us
define P (K)(K ′

ij ) and P (�)(�′
i ) as the probability distributions associated, respectively, with
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the renormalized exchange energies in equation (2.3) and with the symmetrical renormalized
crystal fields,

1

2
(�′

i + �′
j ) = L

2
(�i + �j)

+
L∑
l=1

ln

{
(1 + 2[exp(�l)] cosh(Kil + Klj ))(1 + 2[exp(�l)] cosh(Kil−Klj ))

(1 + 2[exp(�l)] cosh(Kil))(1 + 2[exp(�l)] cosh(Klj ))

}
.

(2.5)

Such probability distributions will describe the evolution of the renormalized random variables
{K ′

ij } and {�′
i} within the renormalization process. Operationally, P (K)(K ′

ij ) and P (�)(�′
i )

are represented by two pools of M real numbers each ({K ′
I } and {�′

I }, I = 1, 2, . . . ,M) from
which one may compute, at each renormalization step,

σ (K)n = 1

M

M∑
I=1

(K ′
I )
n (2.6a)

σ (�)n = 1

M

M∑
I=1

(�′
I )
n (2.6b)

which should approach the moments of P (K)(K ′
ij ) and P (�)(�′

i ), respectively.
The process starts by creating two initial pools of M real numbers each, produced

from Gaussian random-number generators [26]. Such initial pools emulate the probability
distributions in equations (2.2). The first RG iteration consists of M operations, where in
each of them one picks at random, 2L numbers from the pool of bonds and (L + 2) numbers
from the pool of crystal fields, assigned, respectively, to the bonds and sites of the diamond
cell, in order to generate the renormalized exchange energies and crystal fields, according to
equations (2.3) and (2.5). After that, one obtains two new pools of numbers, representing
the probability distributions P (K)(K ′

ij ) and P (�)(�′
i ). The whole procedure is repeated, by

picking up numbers from the new pools, in order to generate the renormalized random variables
at the next step. As usual in the RG approach, each phase is dominated by its own attractor,
characterized by well defined limits of the moments in equations (2.6).

In the next section we present and discuss our phase diagrams.

3. Results

The pools of real numbers, emulating the probability distributions P (K)(K ′
ij ) and P (�)(�′

i ),
associated with the renormalized variables in equations (2.3) and (2.5), are dominated by the
behaviour of the lowest-order moments, as described below.

(i) Pool of renormalized bonds. All odd moments follow the behaviour of σ (K)1 , whereas the
even ones behave according to σ (K)2 .

(ii) Pool of renormalized crystal fields. All odd moments follow the behaviour of σ (�)1 (whose
absolute value always increases under successive renormalizations), whereas all even
moments increase at each iteration.

Therefore, in order to characterize the different phases of the present model, one needs to
monitor only three moments, namely, σ (K)1 , σ (K)2 and σ (�)1 . Depending on the fractal dimension
d, one may find the ferromagnetic (F), spin-glass (SG), 0-spin (P0) and ±1-spin (P1) attractors,
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characterized by

σ
(K)
1 → ∞ σ

(K)
2 → ∞ σ

(�)
1 → ∞ (F attractor)

σ
(K)
1 → 0 σ

(K)
2 → ∞ σ

(�)
1 → ∞ (SG attractor)

σ
(K)
1 → 0 σ

(K)
2 → 0 σ

(�)
1 → −∞ (P0 attractor)

σ
(K)
1 → 0 σ

(K)
2 → 0 σ

(�)
1 → ∞ (P1 attractor).

The variables in our phase diagrams are directly related to such moments,

βJ0 = σ
(K)
1 βJ = [σ (K)2 ]1/2 βD0 = σ

(�)
1 . (3.1)

The two attractors with zero effective coupling constants are associated, respectively, with
basins of attraction where the spins prefer Si = 0 (P0 attractor), and Si = ±1 at random (P1

attractor). Herein, we shall follow the standard RG procedure, associated with each attractor
a distinct equilibrium phase. Therefore, our phase diagrams may display, besides the usual
F and SG phases, two other phases (P0 and P1). From the thermodynamical point of view,
such phases are identified by the magnetization (m), the Edwards–Anderson spin-glass order
parameter [2, 3] (q) and the quadrupolar order parameter (p),

m = 1

N

∑
i

[〈Si〉T ]J,D q = 1

N

∑
i

[〈Si〉2
T ]J,D p = 1

N

∑
i

[〈S2
i 〉T ]J,D (3.2)

where 〈〉T and []J,D represent thermal and disorder averages, respectively. The F phase, which
usually occurs for sufficiently high values of σ (K)1 , is characterized by strong correlations
between the spins, in such a way that m �= 0, q �= 0, p �= 0. For dimensions above the
spin-glass lower critical dimension dl , an SG phase usually appears at low temperatures and
small values of the ratio σ (K)1 /σ

(K)
2 , with the spins frozen at random in one of the Si = 0,±1

states, leading to m = 0, q �= 0, p �= 0. Since in phase P0 (P1) the spins prefer the state
Si = 0 (states Si = ±1), in the thermodynamic limit one expects p = 0 (p > 0). Phase
P0, which should occur for sufficiently negative values of the first moment of the crystal-field
probability distribution (σ (�)1 ), is essentially a frozen phase and may be extended down to zero
temperature; trivially one obtains m = q = 0 along P0. Due to thermal effects, throughout
phase P1 the spins are uncorrelated and should fluctuate in time among the possible states,
leading to m = q = 0 as well; however, at very high temperatures, all states are equally
probable, in such a way that p → 2/3, whereas at low temperatures, the preference of the ±1
states leads to p → 1.

Let us start our analysis by looking at the case Di = 0; although this is not an invariant
subspace (see the appendix), one may consider a crude approximation by imposing �i = 0
at all renormalization steps. In doing that, one sees from the appendix that equations (A.2c),
(A.2d) and (A.2e) become mathematically inconsistent (except at the paramagnetic fixed point,
Kij = 0); dealing with equations (A.2a) and (A.2b), one obtains recursion relation (2.3) (with
�l = 0) for the renormalized bonds. The different phases are dominated by

σ
(K)
1 → ∞ σ

(K)
2 → ∞ (F attractor)

σ
(K)
1 → 0 σ

(K)
2 → ∞ (SG attractor)

σ
(K)
1 → 0 σ

(K)
2 → 0 (P attractor).

Our phase diagrams for Di = 0 are exhibited in figure 1, for hierarchical lattices with fractal
dimensions d = 3 and 4 (the phase diagram for d = 2 presents a single critical frontier
separating phases P and F). Analogous to what happens for the spin- 1

2 Ising spin glass, one
obtains an SG phase for d = 3 and 4, but not for d = 2, which leads to the result that the lower
critical dimension dl should lie in the range 2 � dl � 3.
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Figure 1. The phase diagram for Di = 0 of the spin-1 Ising spin glass on hierarchical lattices with
fractal dimensions d: (a) d = 3; (b) d = 4.

Figure 2. The plane J0 = 0 (invariant under the present RG transformation) for d = 3.

Let us know consider the casesDi �= 0, described by the evolution of the random variables
in the recursive equations (2.3) and (2.5). For d = 2 there is no spin-glass attractor, and the only
phases possible, at finite temperatures, are the F, P0 and P1 ones. Slices of the phase diagram
for fixed average values of the initial distribution of crystal fields yield a single critical frontier
between phase F and P0 (P1) for small (large) enough initial values of D0/J . The invariant
plane J0 = 0 exhibits a single critical frontier between phase P0 and P1.

The most relevant case is the approach of a cubic lattice through the diamond hierarchical
lattice of fractal dimension d = 3. Let us first consider the plane J0 = 0 (invariant under the
present RG), shown in figure 2; there is no ferromagnetic phase and the boundaries P0–P1 and
P1–SG meet at zero temperature. One sees no low-temperature re-entrance in the SG phase;
this result is in better agreement with the mean-field phase diagram of da Costa et al [17] than
with the one of Mottishaw and Sherrington [16]. Except for the phases P0 and P1, the phase
diagram shown in figure 2 is qualitatively analogous to the one by Li et al [21] (cf figure 5 of
[21]), which used a different RG approach for the spin-1 Ising spin glass. In figure 3 we show
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Figure 3. Slices of the phase diagram for d = 3, for typical values of the average value of the
initial distribution of crystal fields. (a) D0/J = 1.0; (b) D0/J = −0.5; (c) D0/J = −1.5.

slices of the phase diagram for typical choices of the average value of the initial distribution of
crystal fields; it should be mentioned that such planes are noninvariant under the present RG
transformation. One notices that the SG phase is suppressed by decreasing D0, in such a way
that for sufficiently negative values of D0 one finds only phases P0 and F (see figure 3(c)). In
figure 4 we show a three-dimensional part of the phase diagram; for the sake of clarity, the
boundary separating phases P0 and P1 is not exhibited.

For a fractal dimension d = 4 most of the phase diagrams are qualitatively similar to
those of the case d = 3. In figure 5 we exhibit the invariant plane J0 = 0; in analogy to what
happens for d = 3, the SG phase displays no reentrant behaviour at low temperatures and the
basic difference from the phase diagram shown in figure 2 is that the boundary P0–P1 meets the
SG critical frontier at a finite temperature. A slice of the phase diagram for an average value of
the initial distribution of crystal fields D0/J = 0 is presented in figure 6. Within the present
RG approach, diamond hierarchical lattices with d > 4 are expected to yield, qualitatively,
similar phase diagrams to those of the cases d = 3 and 4.

It is interesting to compare the qualitative properties of the spin- 1
2 and spin-1 Ising spin

glasses; the inclusion of the state Si = 0 may bring significant changes to the well known
physical behaviour of the spin- 1

2 Ising spin glass as we describe below.
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Figure 4. A part of the phase diagram for the hierarchical lattice with fractal dimension d = 3.
For clarity, the phases P0 and P1 are combined into a single phase (P). In the smaller blocks each
phase is represented separately.

Figure 5. The plane J0 = 0 (invariant under the present RG transformation) for d = 4.

(i) For the spin- 1
2 case the crystal field introduced in equation (2.1) is irrelevant, leading to an

additive constant in the Hamiltonian; in the present problem a positive (negative) crystal
field favours the Si = ±1 states (Si = 0 state).

(ii) An enhancement of the paramagnetic order is expected by the inclusion of the state Si = 0.
For Di = 0, such an effect is illustrated in figures 1(a) and 1(b), where the P–SG critical
frontier appears at lower temperatures, as compared with the corresponding critical frontier
of the spin- 1

2 case [6]. The paramagnetic phase may become even more pronounced by the
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Figure 6. Slice of the phase diagram for d = 4, for an average value of the initial distribution of
crystal fields D0/J = 0.

introduction of a crystal field, as observed in the mean-field treatment of the spin-1 Ising
spin glass, where one obtains a paramagnetic phase that extends down to zero temperature
within a certain range of values of the crystal field [14–17]. Within the present approach,
for certain values of the average of the crystal-field probability distribution, two distinct
phases with absence of magnetic order were found; in some cases, such phases prolong
to zero temperature as well.

(iii) The spin-glass lower critical dimension does not seem to be significantly affected by the
inclusion of the stateSi = 0. The present work is in agreement with a previous RG analysis
[21], leading to 2 � dl � 3 for the spin-1 Ising spin glass, in analogy to what happens
for the corresponding spin- 1

2 model [6–12]. Although the spin-glass phase may occur at
lower temperatures, as compared to the one of the spin- 1

2 case, due to a weakening of the
long-range spin-glass correlations among the spins at states Si = ±1, the lattice dimension
seems to be determinant for the occurrence of spin-glass order at finite temperatures.

(iv) Within the RG approach, the state Si = 0 poses new difficulties, in the sense that the
recursion relations are not closed under renormalization, and further approximations are
required. The possible consequences of the approximations used in obtaining the recursion
relations of the present approach are discussed in the next section, where we present our
main conclusions.

4. Conclusion

We have considered the nearest-neighbour-interaction spin-1 Ising spin glass on diamond
hierarchical lattices of fractal dimensions d = 2, 3 and 4, in the presence of random crystal
fields. At the beginning of the iteration process, the coupling constants and crystal fields
were taken from independent Gaussian probability distributions. Using a Migdal–Kadanoff
renormalization-group approach to study the system, we have shown that the lower critical
dimension, above which one expects a spin-glass phase at finite temperatures, should lie in the
range 2 � dl � 3, in analogy to what happens in the corresponding spin- 1

2 model. Two distinct
attractors characterized by zero effective coupling constants were found; such attractors were
associated with two distinct phases with absence of magnetic order, namely, a zero-spin phase
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(where the spins prefer the 0 state) and a ±1-spin phase (with the spins favouring the ±1 states
at random). It should be mentioned that similar phases have also been found in the mean-field
treatment of the S = 1 spin glass with p-spin interactions [27].

It is important to mention that RG approaches for spin-S (S > 1
2 ) Ising systems are usually

ambiguous, in the sense that one obtains more equations than variables to deal with. One
possible way to overcome this difficulty is to introduce higher-order terms in the Hamiltonian,
in such a way as to end up with a closed space of parameters, e.g. instead of dealing with the
form in equation (2.1) one could use

H = −
∑
〈ij〉

JijSiSj −
∑
〈ij〉

LijS
2
i S

2
j −

∑
i

DiS
2
i . (4.1)

One may easily see that the introduction of a new coupling constant in the Hamiltonian of
equation (2.1) yields a well defined RG framework. There are several reasons that led us to
consider, throughout the present work, the form of equation (2.1), as mentioned below.

(i) It is important to have results for short-range-interaction spin glasses in their simpler
Hamiltonian forms; most of the investigations for the spin-1 Ising spin glass, as defined in
equation (2.1), have been carried out at the mean-field level, in the limit of infinite-range
interactions [14–20].

(ii) Each new coupling constant considered in the Hamiltonian will introduce, within the RG
framework, a new probability distribution to be followed numerically. In such a case, the
RG parameter space will be enlarged by at least two new dimensions (associated with
the two lowest moments of the corresponding distribution); this certainly will turn the
problem into a much more complicated one.

(iii) It is important to mention that, at the mean-field level, the term LijS
2
i S

2
j generates a new

parameter, which is nonzero for all temperatures [28]. If the mean-field phase diagram
is preserved (at least qualitatively) for the present problem, such a behaviour would
correspond, within the RG approach, to a single attractor, associated with the probability
distribution of {Lij }, i.e. no interesting new effect would occur by the inclusion of this
term.

(iv) With the inclusion of higher-order terms, new fixed points, and, consequently, new phases
may appear. However, the fixed points found in the present work (associated with the
interactions {Jij } and crystal fields {Di}), as well as their corresponding universality
classes, should remain unaltered, although their basins of attraction may change (leading to
modifications in the critical frontiers). By preserving the fixed points, the phase diagrams
presented herein are not expected to undergo significant qualitative changes.

Therefore, in choosing to work with the set of most relevant equations, we believe we
have captured the essential physics behind the nearest-neighbour- interaction spin-1 Ising spin
glass, in the presence of a crystalline field, on diamond hierarchical lattices.
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Appendix. The recursion relations

In this appendix we will find the recursion relations for the spin-1 Ising spin glass on diamond
hierarchical lattices; let us consider the model defined in equation (2.1) in its symmetrical
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form,

H = −
∑
〈ij〉

JijSiSj − 1

2

∑
i

DiS
2
i − 1

2

∑
j

DjS
2
j . (A1)

The decimation of the internal spin of a given one-dimensional branch l (l = 1, 2, . . . , L) of
the diamond cell corresponds to

exp(K ′
l SiSj + 1

2�
′′
i S

2
i + 1

2�
′′
j S

2
j + A)

=
∑

Sl=0,±1

exp(KilSiSl + KljSlSj + 1
2�iS

2
i + 1

2�lS
2
l + 1

2�jS
2
j )

where {Kij } ≡ β{Jij } and {�i} ≡ β{Di}. After carrying the partial trace over the spin variable
Sl , one obtains the following set of equations, corresponding to the different configurations of
the external spins Si and Sj :
(a) Si = Sj = 1 (or Si = Sj = −1)

exp(K ′
l + 1

2�
′′
i + 1

2�
′′
j + A) = {exp[ 1

2 (�i + �j)]}{1 + 2[exp(�l)] cosh(Kil + Klj )} (A2a)

(b) Si = −Sj = 1 (or Si = −Sj = −1)

exp(−K ′
l + 1

2�
′′
i + 1

2�
′′
j + A) = {exp[ 1

2 (�i + �j)]}{1 + 2[exp(�l)] cosh(Kil −Klj )} (A2b)

(c) Si = 1, Sj = 0 (or Si = −1, Sj = 0)

exp

(
�′′
i

2
+ A

)
=

[
exp

(
�i

2

)]
{1 + 2[exp(�l)] cosh(Kil)} (A2c)

(d) Si = 0, Sj = 1 (or Si = 0, Sj = −1)

exp

(
�′′
j

2
+ A

)
=

[
exp

(
�j

2

)]
{1 + 2[exp(�l)] cosh(Klj )} (A2d)

(e) Si = Sj = 0

exp(A) = 1 + 2 exp(�l). (A2e)

One sees clearly that the set of equations (A.2) is not well defined, in the sense that one
has five equations to be solved for the variables K ′

l , �
′′
i , �′′

j and A. However, one may easily
see that equation (A.2e) is consistent with the others only at the paramagnetic fixed point, i.e.
Kil = Klj = 0; indeed, taking the product of the squares of equations (A.2c) and (A.2d),
divided by the product of equations (A.2a) and (A.2b), one obtains

exp(2A) = {1 + 2[exp(�l)] cosh(Kil)}2{1 + 2[exp(�l)] cosh(Klj )}2

{1 + 2[exp(�l)] cosh(Kil + Klj )}{1 + 2[exp(�l)] cosh(Kil −Klj )}
which recovers (A.2e) only for Kil = Klj = 0. Therefore, in order to find the recursion
relations, we shall not take into account equation (A.2e); solving equations (A.2a)–(A.2d),
one obtains

K ′
l = 1

2
ln

{
1 + 2[exp(�l)] cosh(Kil + Klj )

1 + 2[exp(�l)] cosh(Kil −Klj )

}
(A3a)

�′′
i = �i + ln

{
(1 + 2[exp(�l)] cosh(Kil + Klj ))(1 + 2[exp(�l)] cosh(Kil −Klj ))

(1 + 2[exp(�l)] cosh(Klj ))2

}
(A3b)

�′′
j = �j + ln

{
(1 + 2[exp(�l)] cosh(Kil + Klj ))(1 + 2[exp(�l)] cosh(Kil −Klj ))

(1 + 2[exp(�l)] cosh(Kil))2

}
. (A3c)
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The MKRG prescription for the renormalized coupling constant of the diamond cell
incorporates the contributions from all L bonds,

K ′
ij =

L∑
l=1

K ′
l = 1

2

L∑
l=1

ln

{
1 + 2[exp(�l)] cosh(Kil + Klj )

1 + 2[exp(�l)] cosh(Kil −Klj )

}
. (A4a)

For the renormalized fields, we shall adopt the prescription of Griffiths and Kaufman [24]
which consists in adding up the contributions from all bonds connected to the given site, i.e.

�′
i =

L∑
l=1

�′′
i = L�i

+
L∑
l=1

ln

{
(1 + 2[exp(�l)] cosh(Kil + Klj ))(1 + 2[exp(�l)] cosh(Kil −Klj ))

(1 + 2[exp(�l)] cosh(Klj ))2

}

(A4b)

�′
j =

L∑
l=1

�′′
j = L�j

+
L∑
l=1

ln

{
(1 + 2[exp(�l)] cosh(Kil + Klj ))(1 + 2[exp(�l)] cosh(Kil −Klj ))

(1 + 2[exp(�l)] cosh(Kil))2

}
.

(A4c)
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